Power BI: 15 erreurs courantes chez les débutants 🤔 (2 de 3)

Publié le 17 août 2018
par Sophie Marchand M.Sc., CPA, CGA, MVP
Mauvais outils

Power BI: 15 erreurs courantes chez les débutants 🤔 (2 de 3)

Mauvais outilsJ’ai été la première à offrir des formations Power BI à Montréal (et longtemps la seule), de sorte que j’ai formé un nombre impressionnant d’usagers. La grande majorité des professionnels à qui j’ai enseigné et la grande majorité des professionnels à qui j’enseigne en ce moment sont d’abord et avant tout des usagers d’Excel et ont peu ou pas d’expérience en modélisation de données ou avec d’autres solutions d’intelligence d’affaires. La plupart ont également l’impression qu’apprendre Power BI se fera sans casser des oeufs et qu’ils deviendront autonomes très rapidement. Cet article a pour but de vous donner l’heure juste sur l’apprentissage de Power BI, surtout si vous êtes présentement des usagers Excel. N’allez pas penser que je souhaite vous décourager, bien au contraire! Power BI est une solution extraordinaire, qui est en train d’être implantée dans de nombreuses entreprises et c’est tant mieux! Je suis ravie de voir l’enthousiasme des entreprises pour cette solution extraordinaire de Microsoft. Cet article a simplement pour but de mieux calibrer vos attentes et d’attirer votre attention sur les erreurs les plus courantes que j’ai observées chez les débutants, justement de façon à faciliter votre apprentissage et vous permettre de bénéficier pleinement de la solution.

 

Cet article fait suite à l’article Power BI: 15 erreurs courantes chez les débutants (1 de 3).

 

#6 Ne pas chercher à optimiser les requêtes

Les débutants en Power BI ont tendance à ne pas saisir complètement l’aspect « performance » des requêtes. Ce faisant, lorsqu’ils écrivent des requêtes dans l’éditeur Power Query, ils ne cherchent pas à les optimiser, i.e. à réduire au minimum les étapes appliquées. Ils peuvent, par exemple, utiliser 10 étapes appliquées (et donc 10 lignes de code, ayant chacune sa lourdeur) pour effectuer une transformation de données qui pourrait être effectuée en une seule étape. S’il est vrai que plus l’éditeur de requêtes évolue, moins il devient essentiel de maîtriser le langage M, je suis d’avis qu’une connaissance de base minimum du langage M permettra d’améliorer significativement la performance des requêtes.

De même, il faut se questionner sur les sources de données auxquelles on se connecte. Devrait-on se connecter en mode d’importation de données? En mode de connexion directe? Ou encore avec via les nouveaux modèles composites? Devrait-on se connecter à la base de données complète? À une vue? Devrait-on rédiger une requête SQL dans la requête d’importation? Les débutants en Power BI ont tendance à ignorer ces questions et peuvent donc être confrontés à des problèmes de performance importants.

 

Modes de connexion aux données sources

Modèles composites

 

#7 Effectuer des transformations dans la source de données

Certains débutants en Power BI ne profitent pas assez de la flexibilité de l’éditeur de requêtes. Ce faisant, ils apportent encore des changements manuels à leurs données sources, avant de les importer dans Power BI, au lieu de laisser l’outil travailler pour eux et automatiser le processus à chaque mise à jour des données.

Par exemple, j’ai vu un apprenant qui devait consolider des données provenant de fichiers hebdomadaires. Chaque semaine, il recevait par courriel un fichier, qui représentait les données de la semaine. Et tous ces fichiers comprenaient un onglet avec un nom différent. Ce faisant, il modifiait manuellement les noms de ces onglets, avant de les enregistrer, afin qu’ils aient tous le même nom et puissent ainsi être importés via l’option « Dossier ». Avec une connaissance minimale du langage M, il n’aurait pas eu à faire de telles modifications.

 

Voici un article à ce sujet: Excel : Fusionner des fichiers avec des noms d’onglets différents à l’aide de Power Query

Power Query Excel.Workbook
 
 

Vous devez analyser de grandes quantités de données et les présenter dans des rapports et tableaux de bord, avec des indicateurs de performance pertinents ? Développez vos compétences avec nos formations en Power BI.

 

#8 Faire des calculs dans la source de données

Plusieurs débutants en Power BI ont aussi tendance à faire une bonne partie, voire tous leurs calculs, dans les sources de données. D’abord, il faut savoir que cela peut affecter la performance (voir point #10) mais en surcroît, cela peut aussi créer des problématiques additionnelles.

Par exemple, ci-dessous, un cabinet comptable a ajouté une colonne dans ses données sources pour calculer le taux de rotation des stocks de chacun de ses clients et cela sur deux années. Cela peut permettre de créer quelques visualisations comme le taux de rotation moyen par client ou le taux de rotation moyen par année. Par contre, qu’adviendra-t-il quand le cabinet voudra comparer l’écart entre le taux de rotation des stocks du client A avec la moyenne des taux de rotation des stocks est autres clients?

 

Calculs dans la source

 

Je suis d’avis qu’il est absolument essentiel de maîtriser les bases du langage DAX pour créer des rapports pertinents dans Power BI. Et un des concepts qu’il faut maîtriser, c’est ce que l’on appelle en anglais le Measure branching où chacune des mesures de notre modèle de données découle d’une autre mesure. Par exemple, on fera:

  • Une mesure pour obtenir les ventes (et si la colonne ventes n’existe pas, on n’aura pas besoin de la créer, on pourra utiliser une fonction itérative comme le SUMX par exemple)
  • Une mesure pour les coûts
  • Une mesure pour les marges (mesure ventes moins mesure coût)
  • Une mesure pour les marges en % (mesure marges divisée par mesure ventes)
    • Imaginez ici un instant que vous n’ayez pas calculé les mesures précédentes, la mesure pour les marges en % serait alors plus complexe à écrire
    • Pire encore, imaginez que vous ayez inséré la formule dans une colonne calculée dans la source… pour obtenir le total, vous feriez la somme des % de marges, ce qui fournirait un résultat erroné
    • Le fait de créer une hiérarchie de mesures rend le modèle très souple et facile à déboguer, le cas échéant en plus de permettre d’effectuer des calculs justes

 

Plus précisément, avec nos données d’inventaire, on pourrait créer la hiérarchie de mesures suivante, qui est très simple:

Inventaire Début

Inventaire fin

Inventaire moyen

CMV

Taux rotation inventaire

Ratio Inventaire Total Clients

 

Ceci nous permettrait de pouvoir comparer aisément le taux de rotation d’un client vs le secteur et ce, pour l’ensemble des années.

Client vs secteurClient 2 vs secteur

 

Découvrez toutes ls formations Power BI offertes par Le CFO masqué pour passer de 0 à héro!

 

#9 Ne pas saisir l’importance du contexte de filtres

Certains débutants ont bien compris l’importance de la normalisation de données et du langage DAX mais ne maîtrisent pas ce que l’on appelle le contexte de filtres des rapports. Voici par exemple ce que j’ai vu chez un client. Celui-ci a construit un rapport complet qui comparait les données de 2017 vs 2016. Ses données sources comprenaient bel et bien une colonne Année. Il avait donc bien normalisé ses données. Il avait aussi utilisé le langage DAX pour créer ses mesures, mais ne saisissant pas très bien le contexte de filtres, il a procédé de la façon suivante:

  • Ventes 2016 = CALCULATE ([Ventes], Ventes[Année]= »2016″)
  • Ventes 2017 = CALCULATE ([Ventes], Ventes[Année]= »2017″)
  • Écart Ventes 2017-2016 = Ventes 2017 – Ventes 2016

 

Quel est le problème avec cette procédure à votre avis?

Et bien, quand est venu le mois de janvier 2018, le client, pris de panique, m’a passé un coup de fil: « Mais c’est l’enfer Power BI! Tous nos rapports sont à refaire et comme c’est là, ils seront à refaire chaque année! ». N’ayant pas considéré le contexte de filtres et n’ayant pas profité des mesures de Time Intelligence en DAX, mon client se trouvait effectivement dans un fichu pétrin. Il devait maintenant recréer toutes ses mesures pour 2018 et refaire ses visualisations. Cette approche, je l’ai observée chez plusieurs débutants, qui s’en sont mordus les doigts par la suite!

 

#10 Ne pas optimiser pour la performance

Power BI repose sur un engin qui compresse les données en colonnes. Ce faisant, il est primordial de normaliser les données. Il faudrait toujours viser à ce que les tables de faits ne possèdent que les valeurs à analyser et des clés pour créer des relations avec les tables de dimensions. Rien d’autre. Comme il est plus facile de compresser des nombres que du texte, et comme les tables de faits sont les tables les plus volumineuses d’un modèle de données, le respect de cette règle sera très profitable au niveau de la performance.

De même, les débutants ont tendance à importer beaucoup trop de données (trop de colonnes), comme s’il ne serait plus possible, par la suite, d’ajouter de nouvelles colonnes au besoin. Ceci a un effet direct sur la performance.

 

Ne manquez pas la suite de cet article: Power BI: 15 erreurs courantes chez les débutants (3 de 3).


 

Formation complémentaire

Pour débuter votre apprentissage sur ce bonnes bases, inscrivez-vous à notre formation Power BI (niveau 1).

 

Voici quelques commentaires d’apprenants ayant suivi cette formation :

Louis Lajoie
Écrit il y a 2 mois
Ce cours est le meilleur que j'ai eu l'occasion de suivre

En plusieurs dizaines d'années en informatique, une des formations les plus intéressantes qu'il m'est été donné de suivre.

Nicolas Grandclaude
Écrit il y a 4 mois
Cette formation est une première étape indispensable

Cette formation est une première étape indispensable pour découvrir de manière structuée à Power Bi. Sans hésiter, je recommande cette formation à tous ceux qui veulent franchir un nouveau cap profesionnel.

Thierry Veilleux
Écrit il y a 5 mois
C'était au-delà de mes attentes!

Sophie est une excellente communicatrice qui maîtrise parfaitement son contenu. Les explications sont claires et présentées avec une petite dose d'humour. Le format de la plateforme et des modules font que cela s'insère bien dans une journée de travail bien remplie. Vraiment, chapeau!

Claire Vézina
Écrit il y a 9 mois
C'est très clairement expliqué.

Simple à suivre. Et j'aime le format e-learning, car je peux suivre la formation à mon rythme, en arrêtant pour tester quand j'en sens le besoin.

Jacques Bruneau
Écrit il y a 2 ans
Bravo ! et surtout merci !

La meilleure a ce jour en ligne. Le ton est vivant ! Aussi contrairement à d'autres formations excel suivies en ligne, le fait de pouvoir revenir sur les vidéos et exemples à volonté est un atout majeur contrairement aux autres formations.

CFO-Masque_Formations-en-ligne_FB Le CFO masqué offre un vaste choix de formations en informatique décisionnelle avec Excel et Power BI, via un portail en ligne et à distance en temps réel, selon un calendrier. Si vous désirez organiser des formations privées, faites nous simplement parvenir un courriel à info@lecfomasque.com . Des certificats convenant aux normes de formation continue des divers ordres professionnels du Québec sont offerts pour l'ensemble des formations.  

Découvrez quelles formations vous conviennent

 

1 réflexion sur “Power BI: 15 erreurs courantes chez les débutants 🤔 (2 de 3)”

  1. Bonjour Sophie,

    Merci pour ces précieux conseils qui éviteront une perte de temps certaine, l’apprentissage de power BI étant déjà conséquent pour en maîtriser les bases productives.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Scroll to Top